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Abstract. PET is a functional imaging technique based on detection of annihilation photons
following beta decay producing positrons. In this paper, we present the concept of a new PET
system for preclinical applications consisting of a ring of twelve time projection chambers filled
with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization
charge and scintillation light leads to a significant improvement to spatial resolution, image
quality, and sensitivity. Simulated performance shows that an energy resolution of < 10%
(FWHM) and a sensitivity of 15% are achievable. First tests with a prototype TPC indicate
position resolution < 1 mm (FWHM).

1. Introduction
Positron emission tomography (PET) is a functional imaging technique based on detection of
gamma rays from positron annihilation. Liquid xenon (LXe) gamma ray detectors are excellent
candidates for PET due to copious scintillation and ionization signals which are anti-correlated
[1]. Measuring both charge and light leads to an improvement of energy resolution. Combined
energy resolutions smaller than 4% FWHM at 662 keV have been reported experimentally [2].
Gamma rays interacting with LXe produce large detectable signals due to the high ionization
yield (64e-/keV at high E field) and light output (68 photons/keV at zero E field). The fast
scintillation light decay time (2.2ns) allows sub-ns timing resolution. Ionization charge can drift
long distances in LXe with little spreading (20µm diffusion for 1 µs drift) [3] allowing sub-mm
position resolution. Good energy resolution, sub-ns timing resolution, and 3D sub-mm position
resolution result in improved image contrast and spatial resolution, and reduced image artefacts.
If a time projection chamber (TPC) is used, the position and energy of the each interaction can
be measured and, in case of multiple interactions, the interaction sequence can be reconstructed
using Compton event reconstruction algorithms [4]. For high rates, the light signal can be used
to roughly localize the position of interaction while the charge is drifting to the anode. LXeTPC
detectors have been successfully employed for particle physics, astrophysics, and dark matter
detection [5] [6] [7]. Their application to PET, however, remain to be demostrated. In this
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Figure 1. LXe micro-PET ring.
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Figure 2. Sketch of the LXe PET detector.

work we present a novel concept of a PET system for preclinical applications based on LXeTPC
detectors. Simulated performace and first results obtained with a sector of the LXe PET system
will be discussed.

2. LXe Micro-PET System
2.1. Concept
The proposed PET system for preclinical applications consists of twelve trapezoidal sectors
arranged in a ring geometry placed in a vessel filled with LXe located inside a vacuum cryostat.
Each sector consists of a TPC immersed in LXe viewed by two arrays of avalanche photodiodes
(APDs) (Figure 1). The anode module of the TPC consists of a Frisch grid, a layer of induction
wires, and an anode segmented into strips perpendicular to the wires. Annihilation photons
entering the detector from the cathode side interact with the LXe producing ionization charge
and scintillation light at 178 nm. The induction wires provide the y position of the interaction,
whereas the anode strip which collects the charge provides the x coordinate. The z-coordinate
is calculated from the drift time and the drift velocity. The amplitude of the pulse on the
anode strip is proportional to the energy deposited in the interaction. The scintillation light
measured by the APDs provides the trigger both for readout of charge signals and coincidence
measurements and it is used for fast localization of the position of the interaction at high rates.
Figure 2 shows a sketch of the LXe PET detector. Both scintillation light and ionization charge
are used for energy resolution. A Compton reconstruction algorithm is used to reconstruct
the interaction sequence of multi-interaction events. The same algorithm can be used for the
rejection of random coincidences and scatter.

2.2. Simulated Performance
The simulation of the LXe PET prototype was carried out with the Monte Carlo code Geant4
[8]. The code simulates the decay of a 18F source, the creation of positron, its annihilation with
an electron, the generation of the annihilation pair, and the detection of the annihilation photons
in the detector ring. A new Geant4 process was created to simulate photon non-colinearity due
to positron annihilation-in-flight and non-zero momentum of the electron-positron pair.

For every photon interaction i within the detector, position xG4
i and energy deposited EG4

i

were recorded. Interaction sites closer than 1 mm were merged. The detector position resolution
was modeled by a Gaussian function (width 1mm).
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The number of electrons N i
e− and scintillation photons Si produced were calculated as follows

N i
e− =

(1− Fr∗)× EG4
i

15.6eV
(1)

Si =
(SF + Fr∗)×EG4

i

15.6eV
(2)

where Fr* is the electron-ion recombination fraction, Fr, with charge-light fluctuation and SF =
0.2 [2] is the ratio of number of excitons and ion pairs produced. The charge-light fluctuation
was modeled as a Gaussian function centered at Fr = 0.24 with width 0.032 [9]. A Gaussian noise
(sigma 600 e-) was added to N i

e− to model the electronic noise. Single interactions producing less
than 1800e- were discharged. The total number of electrons detected by the LXePET detector
was the sum of electrons produced in each single interaction:

N∗
e− =

N∑

i=1

N i∗
e− (3)

where N is the number of interactions. The APD noise expressed in photoelectrons was modeled
as sum of electronic and statistical gain fluctuation contributions as described by [10]:

σAPDk =

√
(
(

ENC

G

)2

+ (F − 1)×NAPDk
pe (4)

where the number of photoelectrons seen by each APD is given by:

NAPDk
pe = P (QE × SAPDk) (5)

and ENC is the equivalent noise charge (ENC= 1000e-), G is the gain (G=500), F is the excess
noise factor (F=2.5), P(x) is the Poisson function, QE is the quantum efficiency (QE=80%),
and SAPDk is the number of scintillation photons reaching each APD. In our case the value of
SAPDk is given by

SAPDk =
N∑

i=1

Si × φAPDk(xG4
i ) (6)

where φAPDk(x) is the fraction of solid angle seen by the APDk.
The total number of scintillation photons detected by the LXePET detector corrected for

solid angle using the position from charge was calculated as

S∗ =
∑K

k=1 NAPDk∗
pe

φ(xG)×QE
(7)

where φ is the fraction of solid angle seen by the APDs array, xG is the center of gravity of the
interaction, and K is the number of APDs. Number of electrons (3) and scintillation photons (7)
detected by the LXePET detector were used to calculate the combined energy as described in [2].
Events with combined energy 450-600 keV were selected and, in case of multiple interactions,
their interaction sequence was reconstructed using the Compton reconstruction method [4].
Scattering angles at each interaction point were calculated from energy and geometry. The
interaction sequence with the lowest chi-square was assumed to be the correct time sequence.

To evaluate the energy resolution of the PET system we simulated a 18F point source
embedded in an acrylic cube (side = 1cm) at the center of the field of view (FOV), whereas for
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Figure 3. LXe micro-PET sector mounted on a flange.

the evaluation of the sensitivity we simulated the source in a polyethylene cylindrical phantom
(D=mm, H=4mm) in three different positions along the radial direction (0, 10 mm, and 20 mm)
and five different positions along the axial direction (0, 15 mm, 30 mm, 45 mm, and 55 mm).
The sensitivity was calculated as ratio of annihilation pairs with energy 450-600 keV to emitted
annihilation pairs. The active cathode and anode area of the TPC were 32x100 mm and 92x100
mm respectively. The drift length was 11.2 cm. The distance between the two 24 APDs arrays
was 110 mm. The axial length was 10 cm. The detector ring diameter was 10 cm.

3. PET Sector Prototype
Cosmic ray muon events were acquired with the LXePET sector to evaluate the detector position
resolution. The LXePET sector was placed inside a 8.5l cryostat. The active volume of the
LXePET sector was 1.1l. Scintillation light was measured by 32 16mm dia. APDs (Advanced
Photonix Inc) located on the two sides of the sector. The anode module consisted of 96 induction
wires with 1.1 mm spacing and 96 orthogonal anode strips with 1.1 mm spacing located 1.6 mm
above the layer of wires. An electric field of 0.9kV/cm was applied between the cathode and the
Frisch grid separated by 12 cm. A field cage provided a uniform electric field in the drift region.
The Frisch grid consisted of 30 µm dia. wires, (cell size= 0.5 mm) located 3.2 mm from the the
anode strips. The electric field between the wires and the anode was set to 4 kV/cm to ensure
good grid transparency. The detector was operating at 17 psia and at a temperature of 169 K.
Figure 3 shows the sector mounted on a flange before its insertion in the cryostat.

In order to achieve a satisfactory purity level, the vessel containing the LXePET sector was
bake-out in vacuum for 7 days at 100◦C and then flushed with hot xenon (70◦C) for 7 days. The
xenon purification was performed both in gas (5cc/min) and liquid phase (0.35 L/min).

The signals from strips and wires were sent first to charge-sensitive shaping amplifiers, then
to waveform digitizer VF48 modules [11]. The sampling rate was set to 15MHz. The observed
noise of the charge-sensitive amplifier was 700 electrons. The APD signals were sent to a current-
sensitive preamplifier and to a VF48 digitizer module. The sampling rate was set to 60MHz.
The APDs gain was set to 600. The effective electronic noise was 104 electrons.

Cosmic ray muon events triggering at least one APD were recorded. Noisy events, events
with multiple tracks, and events with less than 16 strips and 6 wires were rejected. The accepted
tracks were fitted with a linear function in the xz plane. Tracks with χ2 > 50 or shorter than 8
µs were rejected. As result of this selection procedure, 236 muon events were considered. The
distance of each hit from the linear fit of the selected tracks was calculated.
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Figure 4. Simulated energy spectrum
from charge (blue line), light (red line)
and combined (black line).
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Figure 5. 3D sensitivity map of
the PET system simulated using a 18F
radioactive source.

� �

Figure 6. Event display showing a cosmic ray muon event.

4. Results and Discussion
4.1. Simulated Performance of the LXe Micro-PET System
Figure 4 shows the simulated charge, light, and combined energy spectra of a 18F point source
embedded in a 1cm acrylic cube at 2.66 kV/cm drift field. The resolution from ionization
charge, scintillation light, and combined were 11.9%, 32.5%, and 9.9% (FWHM) respectively.
The simulated sensitivity map is shown in Figure 5. The sensitivity at the center of the FOV
is 15% and remains constant along the radial direction, whereas it sharply decreases along the
axial direction due to the solid angle.

4.2. First Results with the Test Sector
A typical cosmic ray muon event is shown in Figure 6. The digitized waveforms from the APDs
(left), anode strips (center), and induction wires (right) are plotted as a function of time. The
waveforms of anode strips and induction wires extending over the full drift time (50 µs) are
sampled every 66.7ns. Deviations of cosmic ray muon tracks from linearity are shown for the x
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Figure 7. Residual in x coordinate for cosmic ray muon tracks.

coordinate in Figure 7. The FWHM of the residuals is 0.48 mm.

5. Conclusions and Future work
Preliminary results of the LXe PET sector prototype and simulation results have been
encouraging for the application of LXe detectors for PET. Simulations of the LXePET system
including positron range and photon non-colinearity show an energy resolution of < 10%
(FWHM) and sensitivity 15% at the center of the FOV. Tests with cosmic rays indicate a
position resolution better than 1 mm. Coincidence tests with a Na22 point source and a
BrilLanCe detector are planned for a complete study of the LXePET detector performance.
In addition, PET measurements with two LXe PET detectors will be performed to evaluate
image quality, spatial resolution, and sensitivity.

Acknowledgments
This work was supported in part by NSERC, CIHR (CHRP Program), the Canada Foundation
for Innovation, the University of British Columbia, and TRIUMF which receives federal founding
via a contribution agreement through the National Research Council of Canada.

References
[1] Kubota S et al. 1978 Phys.Rev. B 17 2762
[2] Aprile E, Giboni K L, Majewski P, Ni K and Yamashita M 2007 Phys. Rev. B 76
[3] Doke T 1982 Nucl. Instrum. Meth in Phys. Res. 196
[4] Oberlack U G, Aprile E, Curioni A, Egorov V and Giboni K L 2000 Hard X-Ray, Gamma-Ray, and Neutron

Detector Physics II 4141 168–177
[5] Angle J et al. 2008 Phys. Rev. Lett. 100
[6] Neilson R et al. 2009 Nucl. Instrum. Meth. A 608
[7] Aprile E, Curioni A, Giboni K L, Kobayashi M, Oberlack U G, Ventura S, Chupp E L, Dunphy P P, Doke

T and Kikuchi J 2004 New Astronomy Reviews 48 257 – 262
[8] Agostinelli S et al. 2003 Nucl. Instrum. Meth. A 506
[9] Amaudruz P, Bryman D, Kurchaninov L, Lu P, Marshal C, Martin J P, Muennich A, Retiere F and Sher A

2009 Nucl. Instrum. Meth. A 607
[10] Krishnamoorthy S et al. 2006 IEEE Nuclear Science Symposium Conference Record
[11] Martin J P and Amaudruz P 2006 IEEE Trans. Nucl. Sci. 53

International Nuclear Physics Conference 2010 (INPC2010) IOP Publishing
Journal of Physics: Conference Series 312 (2011) 062006 doi:10.1088/1742-6596/312/6/062006

6




