Development of Liquid Xenon Detectors for PET

Douglas Bryman University of British Columbia

Detecting 511 keV Photons: Scintillation and Ionization Techniques

Noble liquid detectors, particularly Xenon , have much of the best of both scintillation and ionization characteristics. Desirable properties of scintillation detectors:

- High light yield (small Fano factor)
- Fast response
- Linearity of response with dE/dx
- Long attenuation length
- Radiation hardness
- High density

Desirable properties of ionization detectors:

- High ionization yield (small Fano factor)
- Fast drift speed at reasonable HV
- Low diffusion rate
- Linearity of response with dE/dx
- Long drift attenuation length high purity
- Radiation hardness
- High density

Noble Liquid Detectors

MEG $\mu \rightarrow e\gamma$ at PSI

Gamma ray astronomy LXegrit (Columbia)

ATLAS at CERN LHC

EXO: Neutrinoless Double Beta Decay

ICARUS Neutrino Detector

XENON dark matter search

XEPET at TRIUMF for medical imaging

8/12/2009

Xe Properties

- $\Box Z=54 \rightarrow \text{High conversion efficiency}$
- □ Boiling point 165.1 K \rightarrow "Easy" cool down
- **Density of liquid ~3.0 g/cc, radiation length for** γ **511 keV ~3 cm**

 \rightarrow compact detector

□ High Voltage Working point ~2 kV/cm \rightarrow Reasonable HV

- □ Ionization yield $W_i = 15.6 \text{ eV}$ (High E field) → Large detectable signal!
- □ Drift velocity: v = 2.5 mm/ms or 4µs/cm. → Fast drift
- □ Diffusion for 1µs drift 20 µm \rightarrow Sub-mm position resolution!
- □ *Purity required* <1ppb (O_2) → Purification is critical
- □ Scintillation at 178 nm \rightarrow Special photo-detectors
- □ Photon yield $W_s = 14.6 \text{ eV}$ (zero E field) → Bright scintillator!
- □ Timing of excitation: $\tau s=2.2ns$; $\tau t=27ns \rightarrow Sub-ns$ time resolution!
- □ Attenuation length >1m \rightarrow OK

□ Available in industrial quantities \rightarrow reasonable price (~\$3/cc)

Comparison with Other Scintillations

Scintillator	BGO	LSO	LXe	NaI(Tl)
Density, g/cc	7.1	7.4	3.1	3.67
Yield, photons/keV	6.4	32	68	40
Decay time, ns	300	40	2.2/27	230
Wavelength, nm	480	420	178	420
Photo-fraction	42%	33%	22%	and the

Time Projection Chamber (TPC): 3-D Imaging

Charge Signal in a Gridded Ionization Chamber: TPC Geometry

Grid shields anode from induced charge during drift Signal Shape independent of drift length.

TRIUMF LXe PET

Goal: *Remove detector performance as a limitation for PET.* (i.e only physics effects of positron range, non-colinearity.

LXe Pet Properties

- High spatial resolution along axial and transaxial directions (1 mm)
- > Depth of interaction resolution (<1 mm)
- Good time resolution (<1 ns)
- > High detection efficiency (>75%)
- Good energy resolution (<10% FWHM)</p>
- > High count rate capability (>10⁵ /s/cm²)
- > Low cost
- Reduced random and scatter noise using Compton scattering reconstruction

TRIUMF XEPET

Liquid xenon TPC with distributed light collection

- Scintillation and ionization signals both used for position and for energy reconstruction
- Fast light signal gives region of interaction from distribution (minimizes pileup)
- Reconstruct drift coordinate from drift time; other two coordinates from anode electrodes (induction wires perpendicular to anode strips)
- 3-D Spatial resolution: <1 mm (FWHM); uniform over FOV
- Energy resolution: 9% (FWHM); suppresses scatter/random image noise
- Compton reconstruction further suppresses scatter and random backgrounds.

Simulations of Compton Reconstruction (Next Talk by Fabrice Retiere)

- > Simulations of LXe micro-PET with ID = 15cm, OD = 39cm, 12cm LXe
- > Positron range included. Non-colinearity not included
- > Dead material: SS 1mm
- > Assumitions: $\Delta E = 9\%$ and $\Delta X = 1$ mm (FWHM), dead time 500ns
- > Compton events: first interaction point determined by using $E-\Theta$ correlations

- > Absolute sensitivity 12%
- > Background suppression
- Excellent Image quality

Small Scale Prototype

> TPC 3x3x3 cm,

- > Grid: 3 mm spacing, gap 3 mm
- > 2 APDs, Total solid angle ~ 10%
- > 2 Anodes: Central disc dia. 10 mm
- > Tests with Na22

TPC Prototype Tests

- Electrons lifetime > 100 μs, purity < 10 ppb
- Light resolution (rms) 12.7%
- Charge resolution (rms) 5.5%
- Light and charge (rms) 3.8%

8/12/2009

LXPET Design

■ 12 sectors.

- Field cage formed with strips (between sectors) and wires (ends)
- Cathode: resistive kapton on ceramic plates

Anode module

- 96 wires, 96 strips
- SS and kapton PCBs
- AC decoupling with kapton?

• APD modules (5% solid angle)

- 16 APDs and 6 LEDs for monitoring
- 1 HV line and 16 LV lines (HV tuning)

Single Sector Test Status

□ Full-scale sector

- ✓ Fits into existing cryostat
- Designed, parts built
- Assembly is going on
- Cryogenics and controls
 - ✓ More cooling power
 - ✓ Better purification

- **•** FE and RO electronics prepared
- Assembly is nearly complete
- **DAQ** and monitoring are nearly complete
- First cool-down in progress (with APDs and cables, no field cage)
- **G** Final Assembly in May
- Tests in June-December (could continue in 2009)

8/12/2009

Single Sector Test Plans

Technical studies

- Xe purity, stability
- > Mesh and grid transparency
- > APD gain and noise
- > Electronics noise, Xtalk, etc.
- **Basic Xe characteristics**
 - > Light yield
 - > Charge yield
 - > Drift velocity
- Detector performance
 - Position resolution with APDs and with ionization signals
 - Time resolution and rate capability
 - Energy resolution with APDs and with ionization signals
 - > Uniformity, dead area

8/12/2009

- 1 month of technical studies, 1 month of HV curves and 3 month of data taking
- 20TB of raw data, to be stored: 3-4TB

Lab Setup

Light detection

 □ Fast and low noise for Cd = 200 pF
 > Signal ~ 20,000 electrons
 □ BJT gives 4000 e- ENC for 20 ns peaking time
 □ Working 16 channel prototype

● Ionization signal □Low noise, rather slow for Cd = 30 pF □JFET gives 600 e-ENC for 270 ns shaping time □ 32 channel prototype being tested

Long Term Plans

Double-sector test

- Iteration of sector design (alternative photosensors, anode/grid geometry, gap width, field cage, reflections, etc.)
- Cryogenics developments: new cryostat, custom feedthroughs, purification system, cooling, controls HW and SW
- Electronics developments: FE redesign (look at new technologies like SiGe), fast (200MHz 12bit) digitizers for APDs (or PMTs) with trigger capabilities and fast data transfer, readout driver for data collection and pre-processing, fast trigger processor, calibration system

Further Simulations for PET optimization (number of sectors, dimensions)

Build a Full PET scanner

Summary

Liquid xenon is a promising technology for PET
Limitations may be reduced to physics effects (positron range, non-colinearity) rather than detector performance
R&D to establish proof-of-principle is proceeding.
Application of LXe techniques to SPECT, radiography may also be feasible.

Thanks to LXe PET Participants

BCCA: F. Benard

TRIUMF: P.Amaudruz, R. Bula, M. Constable, F.Retiere, L. Kurchaninov, C. Lim, C. Marshall, A.Muennich, T.Ruth

UBC: D.Bryman, P.Lu, V.Sossi, J.Stoessl
 U. Montreal: J.-P. Martin