Liquid Xenon Detectors for Positron Emission Tomography

A. Miceli¹ P. Amaudruz¹ F. Benard⁴ D.A. Bryman² C. Clements² J. Glister¹ L. Kurchaninov¹ J.P. Martin³ A. Muennich¹ F. Retiere¹ T.J. Ruth¹ V. Sossi² A.J. Stoessl² H. Zhu²

¹TRIUMF, Vancouver, Canada ²The University of British Columbia, Vancouver, Can ada ³The University of Montreal, Montreal, Canada ⁴BC Cancer Research

November 4, 2010

BC Cancer Agency CARE & RESEARCH An agency of the Provincial Health Services Authority

IEEE 2010

LXe Detectors for PET 1/16

LXe micro-PET Project - Goal

Develop a PET system for preclinical applications with

- Sub-mm spatial resolution in 3D
- Uniform response throughout FOV
- Energy resolution at 511 keV < 10%(FWHM)</p>
- Time resolution < 1ns</p>

- High sensitivity (> 15%)
- High count rate capability (> $10^5 s^{-1} cm^{-2}$)
- Compton camera functionality

LXe micro-PET Project - Overview

- Scanner geometry: Ring
- Detector type: Liquid Xenon
- Detector: Liquid xenon TPC viewed by two arrays of APDs
- Ionization charge and scintillation light measured simultaneously
- Small scale prototype: proof of principle
 - Measured energy resolution at 511 keV = 10% (FWHM)
- LXe micro-PET sector
 - Currently under test
- Two micro-LXe PET sectors for coincidence PET measurements
- Full PET scanner

IEEE 2010

Why Liquid Xenon?

- High detection efficiency (Z =54 and density =3g/cm³)
- Excellent scintillator
 - High light yield (70 photons/keV at E field = 0)
 - \rightarrow Large scintillation signals
 - Short scintillation decay time (2.2ns)
 - \rightarrow Sub-ns time resolution
- High ionization yield (60 e-/keV at high E field) → Large ionization signals
- Low diffusion rate ($20\mu m$ for $1\mu s$ drift) \rightarrow Sub-mm position resolution
- Ionization/Scintillation anti-correlated → Improved energy resolution

Small Scale Prototype

- LXeTPC 3x3x3cm³
- 2APDs, total solid angle 10%
- 2 Anodes: central disc dia. 10 mm, Grid: 3 mm spacing, gap 3 mm
- Tests with Na22
- Energy resolution = 10% FWHM

P. Amaudruz, Nucl. Instrum. Meth. A 607 (2009)

A. Miceli		IEEE 2010
LXe Detectors for PET	5/ 16	

LXeTPC viewed by APDs

- Gamma rays interact with LXe
 - Prompt scintillation ligth (178nm) detected by APDs
 - Ionization charge collected by anode strips
- 3D position measurement
 - XY: anode strips and induction wires
 - Z: electron drift time and drift velocity
- Energy measurement
 - Combined charge and scintillation light signals

IEEE 2010

LXeTPC viewed by APDs

- Gamma rays interact with LXe
 - Prompt scintillation ligth (178nm) detected by APDs
 - Ionization charge collected by anode strips
- 3D position measurement
 - XY: anode strips and induction wires
 - Z: electron drift time and drift velocity
- Energy measurement
 - Combined charge and scintillation light signals

LXeTPC viewed by APDs

- Gamma rays interact with LXe
 - Prompt scintillation ligth (178nm) detected by APDs
 - Ionization charge collected by anode strips
- 3D position measurement
 - XY: anode strips and induction wires
 - Z: electron drift time and drift velocity
- Energy measurement
 - Combined charge and scintillation light signals

LXeTPC viewed by APDs

- Gamma rays interact with LXe
 - Prompt scintillation ligth (178nm) detected by APDs
 - Ionization charge collected by anode strips
- 3D position measurement
 - XY: anode strips and induction wires
 - Z: electron drift time and drift velocity
- Energy measurement
 - Combined charge and scintillation light signals

LXeTPC viewed by APDs

- Gamma rays interact with LXe
 - Prompt scintillation ligth (178nm) detected by APDs
 - Ionization charge collected by anode strips
- 3D position measurement
 - XY: anode strips and induction wires
 - Z: electron drift time and drift velocity
- Energy measurement
 - Combined charge and scintillation light signals

LXe micro-PET Sector

- TPC 11 active volume
- 32 16mm dia. APDs
- Anode module: 96 induction wires and 96 perpendicular anode strips (spacing 1.1mm)
- Drift length 12 cm
- Drift field 0.9kV/cm
- Xenon purification in gas (5cc/min) and liquid phase (0.35L/min)
- Pressure 17 psia. temperature 169K
- Currently under test

LXe micro-PET Sector - Cosmic ray muon track

A. Miceli

LXe Detectors for PET 8/ 16

IEEE 2010

LXe micro-PET Sector - Residual

 X coordinate = 0.5 mm (FWHM) Z coordinate (along drift direction) = 0.3 mm (FWHM)

A. Miceli		
LXe Detectors for PET	9/ 16	

LXe micro-PET Design

- 12 LXe micro-PET sectors
- Anode module: 96 induction wires, 96 strips (spacing 1.1mm)
- 32 16 mm dia. APDs
- Axial FOV 10 cm
- Transaxial FOV 12 cm
- Drift length 12cm

Dealing with Multi-interaction Events

85% Multi-interaction events

- Compton reconstruction algorithm
 - Find 1st interaction point
 - Suppress scatter and random backgrounds

Event topology

Compton reconstruction algorithm

- For each possible sequence calculate scattering angles from energy and geometry
- Sequence with the lowest χ^2 = Correct interaction sequence

Dealing with High Rates

- 3D position extracted from light pattern on APDs (Neural network)
- Match fast light with slow charge signals
- Method efficiency = 99% (*) (*) 2 pile-up events activity 1mCu

LXe micro-PET - Simulated Performance

- Geant4 simulation, parametrization of detector response Compton reconstruction algorithm for multi-site events, positron range and photon non collinearity included, dead materials
- Energy resolution at 511 keV = 10 % (FWHM)

RIUMF

500 600

Energy (keV)

LXe micro-PET - Simulated Performance

■ Absolute Sensitivity (CFOV point source) = 15 %

A. Miceli LXe Detectors for PET 14/16

IEEE 2010

Summary and Conclusions

- Measured energy resolution at 511 keV 10% FWHM (small scale prototype)
- Measured position resolution with cosmic rays < 1mm (LXe micro-PET sector)
- LXe micro-PET (MC studies)
 - Energy resolution 10% FWHM
 - Absolute sensitivity CFOV 15%
- LXe micro-PET sector under test
- Coincidence PET measurements with 2 LXePET sectors starting in 2011

Compton Reconstruction algorithm

$$cos \theta_G = rac{u_i \cdot u_{i+1}}{\parallel u_i \parallel \parallel u_{i+1} \parallel}$$
 (1)

$$\cos\theta_E = \frac{1}{mc^2} + \frac{1}{E_i} - \frac{1}{E_{i+1}}$$
 (2)

$$\chi_{2} = \frac{1}{N-1} \sum_{i=1}^{N} \frac{(\cos\theta_{G}^{i} - \cos\theta_{E}^{i})^{2}}{\sigma_{G}^{2} + \sigma_{E}^{2}}$$
(3)

IEEE 2010

A. Miceli LXe Detectors for PET 16/16