

Liquid Xenon Detector for Medical Imaging

- □ Xe properties
- □ Scintillations
- □ Scintillators comparison
- □ Ionization in Xe
- □ Energy resolution
- □ Xe detectors in physics

- LXe detector for PET
- LXe PET: our solution
- Light detection: APDs
- □ Charge measurements
- □ Full-scale prototype

Small TPC Tests
 Results from small TPC
 R&D program
 Summary

Xe Properties

- □ Z=54, A=131.3. Isotopes: 8 stable and 2 unstable. Main: 129, 131, 132
- □ Boiling point 165.1 K, melting point 161.4 K. Density of liquid ~3.1 g/cc
- **Ratio liquid/gas 518**
- Dielectric constant (f=0) 1.96. Refractive index (VUV) 1.57-1.75
- **D** Breakdown voltage ~1000 kV/cm (???)
- □ Ionization potential 9.2 eV, Ionization yield Wi = 15.6 eV (next slides)
- □ Radiation length 2.9 cm
- □ Scintillation energy 7 eV (178 nm), yield Ws=14.6 eV (next slides)

Cost ~ 3\$/cc (liquid equivalent)

Scintillations

- Two mechanisms: primary excitation and recombination
 - $R^{*} + R \rightarrow R_{2}^{*} \rightarrow 2R + hv$ or $R^{+} + R \rightarrow R_{2}^{+},$ $R_{2}^{+} + e^{-} \rightarrow R^{**} + R,$ $R^{**} \rightarrow R^{*} + heat,$ $R^{*} + R \rightarrow R_{2}^{*} \rightarrow 2R - hv$

Scintillation yield depends on HV

- **U** VUV: $\lambda = 175-178$ nm; W=14.6 eV/ph
- \Box Timing of excitation: $\tau 1=2.2ns$; $\tau 1=27ns$, $\tau 3=45ns$
- $\Box Attenuation length = 26-36 cm (absorption or Rayleigh?)$
- □ IR: $\lambda = 1000-1600$ nm. W=~48 eV/ph

Comparison with Other Scintillations

Scintillator	BGO	LSO	LXe
Density, g/cc	7.1	7.4	3.1
Yield, photons/keV	6.4	32	68 (20)
Decay time, ns	300	40	2.2/27
Wavelength, nm	480	420	178
Photo-fraction	42%	33%	22%

Ionization in Xe

- □ Asymptotic high-E yield: $15.6 \text{ eV/pair} \rightarrow 32.8 \text{ kel}$ for 511 keV
- ☐ Primary recombination at 2 kV/cm: ~5%
- □ Drift at 2 kV/cm: 2.5 mm/µs or 4µs/cm. Diffusion ~2 cm²/s → 1µs drift gives diffusion of ~14 µm
- □ Purity: with 1ppb \rightarrow e lifetime ~1 ms

➢ Working bias ~ 2 kV/cm

Energy Resolution

- □ Ionization: much worse than Fano limit. $F = 0.2 \rightarrow \text{fwhm} = 0.51\%$ for 662 keV
- □ No simple theory. Density fluctuations?
- □ Light: PE statistics. For 511 keV and QE·SA=5%, $\Delta E = 4.4\%$
- □ Correlations improve E-resolution

CAP2007 20 June 2007

Xe Detectors in Experimental Physics

Dark matter:

DAMA (Italy), XENON (Nevis), ZEPLIN

 \Box Double- β decay:

EXO (Stanford)

□ Astronomy:

GRIT, XENA (Nevis-Lab)

□ Nuclear physics:

RD14 (CERN), MEG (PSI), RAPID (Italy)

□ Medical imaging:

LPSC (Grenoble), LIP (Portugal)

LXe Detectors for PET

Requirements (NIM A353 p189)

- □ High spatial resolution along axial and trans-axial directions (~1 mm)
- □ Depth of interaction ~5 mm
- **Good time resolution** (~1 ns)
- $\Box \text{ Energy resolution (<20\%)}$
- \Box High detection efficiency (>70%)
- □ High counting rate (> 10^5 /s·cm²)
- Low cost

CAP2007 20 June 2007

LXe Detector for PET: Our Solution

Use both scintillation light and ionization signals for energy reconstruction

- □ Trigger from scintillations
- Predict region of interaction from light (to minimize pileup and readout channels)
- □ Reconstruct one of coordinates from drift time (less channels)
- □ Other two coordinates with anode electrodes (strips with perpendicular orientation or strip and wires)
- □ Minimize induction gap (fast induced signals)
- Digitize shapes to get better timing and reject pileup

Light Detection: APDs

- PMT: low QE, not compact. Alternative: APD
- □ Si works at low T and has QE~1 for UV light. Intrinsically it is fast (few ns)
- Large area high-gain APDs are available. API and RMD
- RMD diodes have worse QE at low T.
 Window-less option is under tests

Charge Measurements

- ❑ Configuration: anode strips (pitch ~1.2 mm), wires (spacing ~1.4mm), mesh for shielding from drift region. Gaps ~1mm
- Mesh (SS, cell 500µm, wire 30µm). Transparency measured with gas ionization chamber. 100% transparent with field ratio > 1.9

GRID

2

time, µs

2.5

1.5

Induced currents calculated with FEM. Electronics is optimized for S/N

CAP2007 20 June 2007

L. Kurchaninov

Full-Scale Prototype

\Box 12 sectors.

- Field cage formed with strips (between sectors) and wires (ends)
- Cathode: resistive kapton on ceramic plates

□ Anode module

- 96 wires, 96 strips
- SS and kapton PCBs
- AC decoupling with kapton?

□ APD module

- 16 APDs and 6 LEDs for monitoring
- 1 HV line and 16 LV lines (HV tuning)

CAP2007 20 June 2007

Small TPC Tests

Run May-August 2006

- 8.5-l cryostat, small TPC 3x3x3 cm
- 2 anodes, grid 3 mm gap and 3 mm wire spacing. 2 16mm APDs
- Both QDC and digitizers

□ Measured

- Na-22 γ 511keV coincidence with external NaI and 1275 keV
- Cosmic muons
- Alpha signals
- Anode and cathode HV curves,
- APD bias
- Stability, ...

L. Kurchaninov

Results from Small TPC

drift time, µs

2

3

- □ Analysis in progress
- Purity looks OK
- □ Ionization signal shapes are reasonable
- □ Charge-light anti-correlations are seen
- □ Energy resolution (RMS):

S-12.6%, Q-6.3%, Sum-4.7%

5

6

14

cathode bias. kV

8

7

CAP2007 20 June 2007

R&D Program

□ 2007: Sector prototype

- Fits to existing cryostat
- 96 anode strips, 96 grid wires
- 32 APDs in ends (plus 32 APDs at sides in second prototype)
- □ 2008: Two sectors
 - mPET cryostat
 - Final design of sectors
 - Final electronics and readout
- □ 2009: PET prototype
 - Fully (half) populated
 - Computing: data farm
 - Develop off-line and image reconstruction SW

Summary

- LXe is a very promising technology for PET and other applications
- □ Still requires extended R&D to design and build detector
- Supported by CFI-UBC-BCKDF and TRIUMF Tech Transfer Division and Science Division
- Group:

P.Amaudruz, D.Bryman, R.Bula, M.Constable, L.Kurchaninov, C.Lim, P.Lu, C.Marshall, J.-P.Martin, C.Ohlman, F. Retiere, T.Ruth, V.Sossi