Proof of Principle

LXe for Micro-PET

Future Plans

LS78: Design and Performance of Liquid Xenon Detectors for PET

A. Muennich¹ P. Amaudruz¹ F. Benard⁴ D. Bryman² L. Kurchaninov¹ P. Lu² C. Marshall¹ J. P. Martin³ A. Miceli¹ F. Retiere¹ T. Ruth¹ V. Sossi² J. Stoessl²

¹TRIUMF, Vancouver, Canada ²The University of British Columbia, Vancouver, Canada ³The University of Montreal, Montreal, Canada ⁴BC Cancer Research

LSPEC April 2nd, 2009

- Why use LXe for PET?
- Proof of Principle
 - Small Prototype
 - Data Analysis
- 3 LXe for Micro-PET
 - Prototype Design
 - Prototype Test

4 Future Plans

- Next Steps
- Design of full Micro-PET Ring
 - Funding from CHRP (CIHR+NSERC) from 2008 to 2011

PET and LXe ●○	Proof of Principle	LXe for Micro-PET	Future Plans
Why use LXe for PET?			
Advantages of LX	e for PET		

- Good energy resolution < 10 (FWHM)%
- Compton reconstruction

 \rightarrow 3D localization of first interaction (no parallax error, suppression of random and scatter backgrounds)

- Uniform 3D spatial resolution throughout the field of view:
 < 1 mm in 3D
- Timing resolution: < 1 ns
- High count rate: $> 10^5(s^{-1} \text{ cm}^{-2})$
- Cover large volumes with just one electrode array
 - $\rightarrow \text{high sensitivity}$
 - \rightarrow Efficiency > 70%
- Inexpensive (< \$ 3/cc)

PET and LXe ○●	Proof of Principle	LXe for Micro-PET	Future Plans
Why use LXe for PET?			
Properties of LXe			

- Z=54, A=131 \rightarrow Attenuation length: 36 mm
- Density: 3 g/cc at 165 K \rightarrow compact detector
- Boiling/Melting point temperature: 165 K / 161 K
 → needs cryogenic system
- Produces ionization and scintillation light

 → combining both improves energy resolution
- Purity important: 1 ppb allows an e⁻ lifetime of 1ms

Ionization

- Yield: 15.6 eV \rightarrow 32800 e⁻ at 511 keV and $E_d = \infty$
- Edrift: 1-2 kV/cm
- v_{drift}: 2 mm/μs

Scintillation

- Yield: 13.8 eV \rightarrow 37000 γ s at 511 keV and $E_d = 0$
- γs with λ = 175 178 nm (special photo-detectors)

PET and LXe	Proof of Principle ●○○	LXe for Micro-PET	Future Plans
Small Prototype			

Time Projection Chamber (TPC)

Paper about results ready for submission to Nucl. Instr. Meth. A

- TPC volume 3x3x3 cm³
- E=1 kV/cm, v_d =2 mm/μs
- 2 APDs; solid angle \approx 12%
- 511 keV γ s from ²²Na

Achievements:

- Measured charge and light
- Studied energy resolution
- Understood detector contribution and limitations

PET	and	LXe	

Proof of Principle

LXe for Micro-PET

Future Plans

Data Analysis

Charge-Light-Anti-correlation

PET and LXe	Proof of Principle ○O●	LXe for Micro-PET	Future Plans
Data Analysis			

Understanding Error Contributions

Identify error contributions to energy resolution to quantify intrinsic resolution capability:

Charge

Electronics noise (3.5%)

Light

Electronics noise (4.7%) Gain fluctuations (0.6%) Solid angle fluctuations (5.6%) Energy resolutions:

	meas. [%]	intr. [%]
Q	12.1	5.5
L	5.4	4.2
С	4.1	2.5

With position information available from charge, expect:

- \rightarrow Light resolution: 10.4%
- \rightarrow Combined energy resolution: 3.6% (< 8% FWHM)

Proof of Principle

LXe for Micro-PET ●○○○ Future Plans

Prototype Design

Micro-PET Design

- 12 sectors, 32 APDs per sector, 96 anode wires, 96 anode induction wires
- Radial depth 12 cm
- Minimal dead space between sectors to increase active volume

PET and LXe oo	Proof of Principle	LXe for Micro-PET o●oo	Future Plans
Prototype Design			

Position Reconstruction from Fast Light Signal

 \rightarrow Important for high rate operation

Volume in which interaction can be found can be restricted to \sim 1 ml depending on noise.

Proof of Principle

LXe for Micro-PET ○○●○ Future Plans

Prototype Test

Prototype Status

Recent Progress

- Finished test with 16 APDs
- 1st use of liquid purification
- 1st test of pulse tube refrigerator

Problems Solved

- High voltage issues with APDs in LXe
- APD spring contacts faulty
 → replaced
- Devised procedure of evacuating, baking and cool down

Proof of Principle

LXe for Micro-PET ○○○● Future Plans

Prototype Test

APD Sector Test (just completed)

APD signals were observed from 511 keV photons from ²²Na

Test ended prematurely due to vacuum problem

But:

Signal amplitude lower than expected

Probable Causes

Impurities in LXe like H_2O \rightarrow Attenuation too high But: Currently no equipment to measure LXe purity

Possible Solution

Use gas purifier in addition to liquid phase purifier + longer high temperature bake-out

PET	and	LXe

Proof of Principle

LXe for Micro-PET

Future Plans ●○○

Next Steps

Operating and Testing First Sector Prototype

Now assembling TPC and APDs together

 \rightarrow operational in Summer 2009

Technical Performance

- Purity
- Stability
- Mesh and grid transparency
- APD gain and noise
- Electronics noise
- Crosstalk, etc.

Detector Performance

- Light and charge yield
- Drift velocity
- Position resolution with light and ionization
- Time resolution and rate capability
- Energy resolution with light and ionization

PET and LXe oo	Proof of Principle	LXe for Micro-PET	Future Plans ○●○
Design of full Micro-PET Ring			
Long Term Plans			

CHRP Project: Design of cryostat in progress:

Build two new opposing sectors and operate in coincidence

Proof of Principle

LXe for Micro-PET

Future Plans ○0●

Design of full Micro-PET Ring

LXePET Schedule and Resources

Schedule

- 7/2009-11/2009: Test Sector Prototype
- 9/2009: Complete Cryostat Design
- 1/2010-9/2010: Construct Cryostat and Sectors
- 1/2011: Testing

Resources

- Mech./Cryo. Eng. (C. Marshall)
- Designer (D.O.)
- Manufacturing (LADD, M.S.)
- Electronics engineer/shop (E.S.)
- Technical Support:
 - Electr. Technologists (R. Bula, M.Constable)
 - Mech. Technologist (C. Lim)
- LADD Cryogenics and Microstructures Labs

Proof of Principle

LXe for Micro-PET

Future Plans

BACKUP

PET and LXe	Proof of Principle	LXe for Micro-PET	Future Plans

20	h	bd	h di	
36		Ju	u	C

Activity	Start	End
Install and test single sector	2009-07	2009-11
Cryostat Design	2008-10	2009-09
Cryostat Construction	2009-06	2009-12
Cryostat Assembly	2009-10	2010-09
Sector Design	2009-01	2009-12
Sector Construction	2009-06	2010-06
Sector Assembly	2010-06	2010-09
Electronics Design	2009-06	2010-03
Data Acquisition System	2010-03	2010-12
Initial operation of multiple sectors	2010-09	2010-12
LXe coincidence meas. (point source)	2011-01	2011-06
LXe coincidence PET meas. (phantoms)	2011-06	2011-09
PET coincidence meas. (at UBC Hospital)	2011-09	2011-12