LS 78:

Development of Liquid Xenon Detectors for PET

L. Kurchaninov

for Collaboration

P.Amaudruz, F.Benard(BCCA) D.Bryman (UBC), L.Kurchaninov, P.Lu, J.-P.Martin, A.Muennich, F.Retiere, T.Ruth, V.Sossi, J.Stoessl(UBC)

PET detectors

- Liquid Xenon properties
- Compton reconstruction
- □ TPC prototype tests
- LXPET design
- □ Single sector test status and plans
- Long term plans
- □ TRIUMF resources

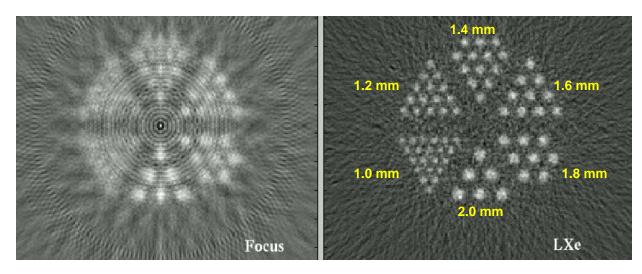
PET Detectors

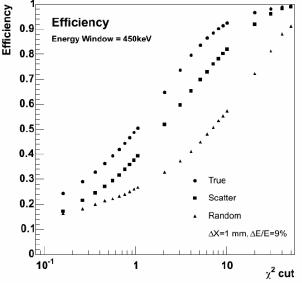
Typical performance

- Spatial resolution 6 mm
- DOI information NO
- Time resolution 3 ns (fwhm)
- Energy resolution 20-25% (fwhm, for 511 keV)
- Detection efficiency 85%

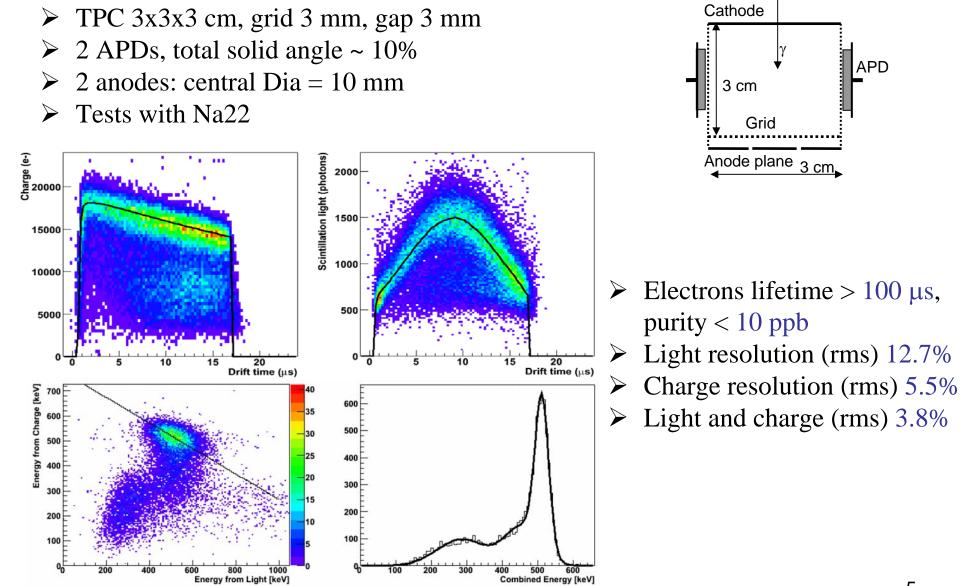
Our goals

- High spatial resolution along axial and transaxial directions (~1 mm)
- Depth of interaction sensitivity (DOI) (<1 mm)</p>
- \blacktriangleright Good time resolution (~1 ns)
- \blacktriangleright High detection efficiency (>70%)
- ➢ Good energy resolution (<10% fwhm)</p>
- > High count rate (> 10^5 /s/cm²)
- \succ Low cost
- Use Compton scattering reconstruction to reduce backgrounds

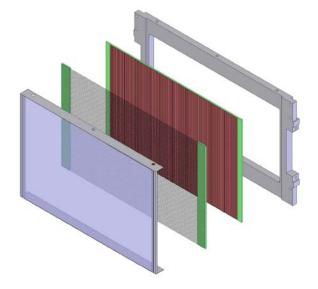

Xe Properties


- \Box Z=54 \rightarrow high efficiency
- □ Boiling point 165.1 K \rightarrow "easy" cool down
- ❑ Density of liquid ~3.0 g/cc, radiation length for γ 511 keV ~3 cm
 → compact detector
- □ Working point ~2 kV/cm → reasonable HV
- □ Ionization yield Wi = 15.6 eV (High E field) \rightarrow detectable signal
- ☐ Drift at 2 kV/cm: 2.5 mm/ms or 4 μ s/cm. → fast signal
- □ Diffusion for 1µs drift ~20 µm \rightarrow sub-mm position resolution
- □ Purity required <1ppb (O_2) → purification is critical
- □ Scintillation at 178 nm \rightarrow special photo-detectors
- ☐ yield Ws = 14.6 eV (zero E field) \rightarrow bright scintillator
- ☐ Timing of excitation: $\tau s=2.2ns$; $\tau t=27ns$ → sub-ns time resolution
- □ Attenuation length = 26-36 cm \rightarrow OK for ~10cm detector

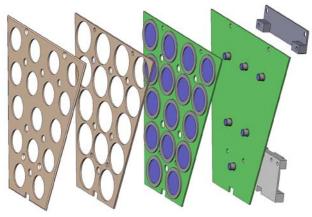
□ Available in industrial quantities \rightarrow reasonable price (~\$3/cc)


Simulations of Compton Reconstruction

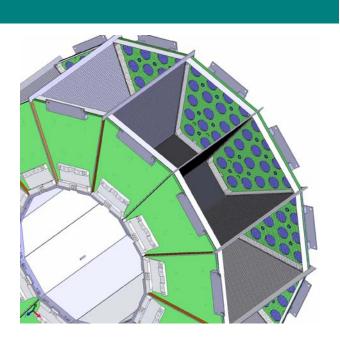
- Simulations of LXe micro-PET with ID = 15cm, OD = 39cm, axial 12cm
- Positron range included. Non-colinearity not included
- Dead material: SS 1mm
- Assuming $\Delta E = 9\%$ and $\Delta X = 1$ mm (fwhm), dead time 500ns
- \blacktriangleright Compton events: first interaction point determined by using E- Θ correlations
 - Absolute sensitivity 12%
 - Background suppression capability
 - Image quality (phantom rods in water)


TPC Prototype Tests

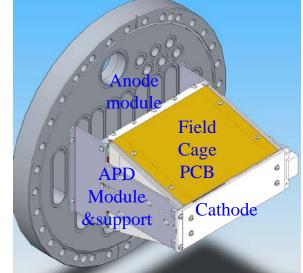
LXPET Design


□ 12 sectors.

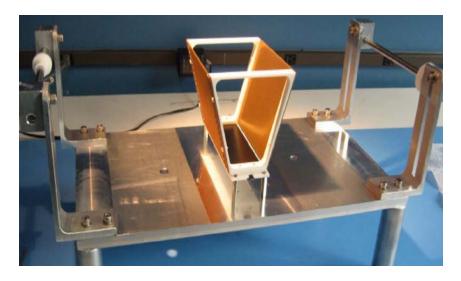
- Field cage formed with strips (between sectors) and wires (ends)
- Cathode: resistive kapton on ceramic plates


Anode module

- 96 wires, 96 strips
- SS and kapton PCBs
- AC decoupling with kapton?

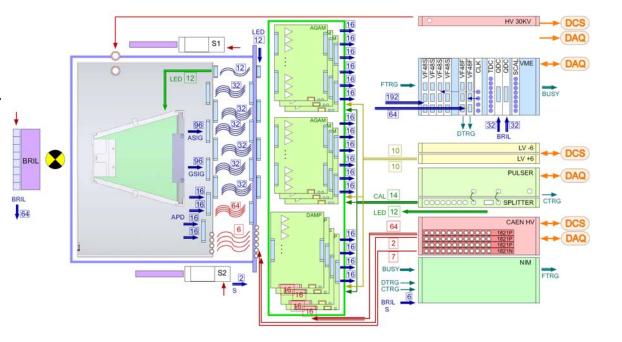

□ APD module

- I6 APDs and 6 LEDs for monitoring
- 1 HV line and 16 LV lines (HV tuning)



Single Sector Test Status

- ☐ Full-scale sector
 - \checkmark Fits into existing cryostat
 - ✓ Designed, parts built
 - \checkmark Assembly is going on
- Cryogenics and controls updated
 - ✓ More cooling power
 - ✓ Better purification
- □ FE and RO electronics prepared
- Assembly is nearly complete
- □ DAQ and monitoring are nearly complete
- □ First cool-down in progress (with APDs and cables, no field cage)
- □ Final Assembly in May
- Tests in June-December (could continue in 2009)



Single Sector Test Plans

- ☐ Technical studies
 - ➤ Xe purity, stability
 - Mesh and grid transparency
 - > APD gain and noise
 - ➢ Electronics noise, Xtalk, etc.
- □ Basic Xe characteristics
 - Light yield
 - Charge yield
 - Drift velocity
- □ Detector performance
 - Position resolution with APDs and with ionization signals
 - Time resolution and rate capability
 - Energy resolution with APDs and with ionization signals
 - Uniformity, dead area

- In total ~1 month of technical studies, 1 month of HV curves and 3 month of data taking
- □ 20TB of raw data, to be stored: 3-4TB

Long Term Plans

Depend on the single sector test results

□ Simulations for PET optimization (number of sectors, dimensions)

Double-sector test

- Next iteration of sector design could be needed (alternative photosensors, anode/grid geometry, gap width, field cage, reflections, etc.)
- □ Cryogenics developments: new cryostat, custom feedthroughs, purification system, cooling, controls HW and SW
- Electronics developments: FE redesign (look at new technologies like SiGe), fast (200MHz 12bit) digitizer for APDs (or PMTs) with trigger capabilities and fast data transfer, readout driver for data collection and pre-processing, fast trigger processor, calibration system
- □ Local disk storage (~4-5TB), data analysis farm, SW developments

Half-PET and Full-PET

□ If CECR support available

Resources

- Cryogenics Laboratory spaceHQP
 - LADD physicist Astrid Muennich
 - ➤ M.Sc student Philip Lu (completed)
 - ➤ 2 UBC senior thesis students
- □ Technical Personnel (20-40% FTE in 2008)
 - Cryogenics engineer Cam Marshall (TRIUMF)
 - Mechanical and machining support: Chapman Lim (LADD/TRIUMF)
 - Electronics/control systems technologist Ray Bula (TRIUMF)
 - Electronics (FE) design engineer: Miles Constable (LADD/TRIUMF)
 - Electronics (RO) design engineer: Chris Ohlman (TRIUMF)
 - DAQ support: Pierre Amadruz (TRIUMF)
- □ Machine shop and electronics shop allocations
- □ NRC funds for maintenance
- □ CFI IOF (LADD) for upgrades and developments

