Design and Performance of Liquid Xenon **Detectors for PET**

A. Muennich¹

P. Amaudruz¹ D. Bryman² L. Kurchaninov¹ P. Lu² C. Marshall¹ J. P. Martin³ A. Miceli¹ F. Retiere¹ V Sossi²

> ¹TRIUMF. Vancouver. Canada ²The University of British Columbia, Vancouver, Canada ³The University of Montreal, Montreal, Canada

APSNW May 16, 2009, Vancouver BC

- PET: Positron Emission Tomography
- Why use LXe for PET?

- Small Prototype
- Data Analysis

4 Future: Design of full Micro-PET Ring

Working principle of PET

Principle

- Short lived isotopes decays emitting e⁺
- e^+ drift range \approx 1mm (FWHM)
- e^+ annihilates into pair of 511 keV γ s
- Angle between $\gamma s \approx 180^{\circ}$
- Reconstruct line of response (LOR)
- Functional imgage (tumor screening)

Current Detector

- Scintillating crystals in ring geometry
- Crystal provides discrete location → No information about depth of interaction
- Energy resolution \approx 18% (FWHM)

PET and LXe ○●○	Proof of Principle	LXe for Micro-PET	Future: Design of full Micro-PET Ring	
Working principle of PET				

Functional Image

Current Detector

- Scintillating crystals in ring geometry
- Crystal provides discrete location → No information about depth of interaction
- Energy resolution \approx 18% (FWHM)

PET and LXe ○○●	Proof of Principle	LXe for Micro-PET	Future: Design of full Micro-PET Ring
Advantages of	of LXe for PET		

- Attenuation length: 36 mm (at 165 K) \rightarrow compact detector
- Produces ionization and scintillation light
 → combining both improves energy resolution:
 energy resolution < 10 (FWHM)%
- Compton reconstruction
 - \rightarrow 3D localization of first interaction (no parallax error, suppression of random and scatter backgrounds)
- Uniform 3D spatial resolution throughout the field of view:
 < 1 mm in 3D
- Timing resolution: < 1 ns
- Cover large volumes with just one electrode array
 - $\rightarrow \text{high sensitivity}$
 - \rightarrow Efficiency > 70%
- Inexpensive (< \$ 3/cc)

Time Projection Chamber (TPC)

- TPC volume 3x3x3 cm³
- E=1 kV/cm, v_d =2 mm/μs
- 2 APDs; solid angle \approx 12%
- 511 keV γ s from ²²Na

Achievements:

- Measured charge and light
- Studied energy resolution
- Understood detector contribution and limitations

PET and LXe

Proof of Principle

LXe for Micro-PET

Future: Design of full Micro-PET Ring

Charge-Light-Anti-correlation

Understanding Error Contributions

Identify error contributions to energy resolution to quantify intrinsic resolution capability:

Charge

Electronics noise (3.5%)

Light

Electronics noise (4.7%) Gain fluctuations (0.6%) Solid angle fluctuations (5.6%) Energy resolutions:

	meas. [%]	intr. [%]
Q	12.1	5.5
L	5.4	4.2
С	4.1	2.5

With position information available from charge, expect:

- \rightarrow Light resolution: 10.4%
- \rightarrow Combined energy resolution: 3.6% (< 8% FWHM)

LXe for Micro-PET

Future: Design of full Micro-PET Ring

Micro-PET Design

- 12 sectors, 32 APDs per sector, 96 anode wires, 96 anode induction wires
- Radial depth 12 cm
- Minimal dead space between sectors to increase active volume

LXe for Micro-PET

Future: Design of full Micro-PET Ring

Prototype Status

Finished test with 16 APDs

- 1st use of liquid purification
- Observed low signal amplitude

Probable Causes

 $\begin{array}{l} \text{Impurities in LXe like } H_2O \\ \rightarrow \text{ Attenuation too high} \end{array}$

Possible Solution

Use gas and liquid phase purifier + longer high temperature bake-out

PET and LXe	Proof of Principle	LXe for Micro-PET	Future: Design of full Micro-PET Ring
Outlook			

CHRP Project: Design of cryostat in progress:

Build two new opposing sectors and operate in coincidence

LXe for Micro-PET

Future: Design of full Micro-PET Ring

BACKUP

Image Reconstruction from Simulations

Same simple reconstruction method (Filter-Back Projection) used for both (emphasis on resolution not image quality):

In the simulation, the limitations of the LXe system are primarily due to physics effects such as the positron range.

LXe for Micro-PET

Future: Design of full Micro-PET Ring

Position Reconstruction from Fast Light Signal

 \rightarrow Important for high rate operation

Challenge

Input: 32 APD signals Looking for 3D position

Solution

Neural Network Implemented in ROOT/C++

Volume in which interaction can be found can be restricted to \sim 1 ml depending on noise.

PET and LXe	Proof of Principle	LXe for Micro-PET	Future: Design of full Micro-PET Ring
Schedule			

Activity	Start	End
Install and test single sector	2009-07	2009-11
Cryostat Design	2008-10	2009-09
Cryostat Construction	2009-06	2009-12
Cryostat Assembly	2009-10	2010-09
Sector Design	2009-01	2009-12
Sector Construction	2009-06	2010-06
Sector Assembly	2010-06	2010-09
Electronics Design	2009-06	2010-03
Data Acquisition System	2010-03	2010-12
Initial operation of multiple sectors	2010-09	2010-12
LXe coincidence meas. (point source)	2011-01	2011-06
LXe coincidence PET meas. (phantoms)	2011-06	2011-09
PET coincidence meas. (at UBC Hospital)	2011-09	2011-12