

Detectors for PET

A Muennich¹ D. Bryman² L. Kurchaninov¹ P. Lu² P. Amaudruz¹ J. P. Martin³ A. Miceli¹ F. Retiere¹ C. Marshall¹ V. Sossi²

> ¹TRIUME, Vancouver, Canada ²The University of British Columbia, Vancouver, Canada ³The University of Montreal, Montreal, Canada

> > TRIUMF Seminar April 8th 2009

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Outline					

- **Medical Imaging**
- PET: Positron Emission Tomography
- Current Status of PET
- 2 Liquid Xenon (LXe)
- 3 LXe for Micro-PET
 - Proof of Principle
 - Prototype Design
 - Prototype Test
- 4

Reconstruction

- Position Reconstruction from Light
- Compton Reconstruction
- 5 Future Plans
 - Design of full Micro-PET Ring

Summary

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
• • • •					
Outline					
● F ● C	dical Imaging PET: Positron E Current Status c	mission Tomog of PET	Iraphy		
 2 Liq 3 LXe • F • F • F 	uid Xenon (LX for Micro-PE Proof of Principl Prototype Desig Prototype Test	e) F n			
A Reconstruction of the second sec	construction Position Recons	truction from L	ight		

- Compton Reconstruction
- 5 Future Plans
 - Design of full Micro-PET Ring
- **6** Summary

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary		
PET: Positron Emission Tomography							
Working principle of PET							

- Short lived isotopes decays emitting e⁺
- e⁺ drift range about 1mm (FWHM)
- e⁺ annihilates into pair of 511 keV γs
- Angle between $\gamma s \approx 180^{\circ}$ (small non-collinearity effect)
- Reconstruct line of response (LOR)

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary	
PET: Positron Emission Tomography						
Medical use	e of PET					

- PET is a functional scan, does not show anatomic features
- Non-invasive method to screen for tumors
- Traces biological processes to study pathology
- Targeted radio-pharmaceuticals with positron emitters are used
- Widely used tracer: FDG (fluorodeoxyglucose), mostly for cancer studies

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Current Status of PET					

Conventional PET Detector

- Scintillating crystals in ring geometry
- γs deposit energy in crystals
- Crystal provides discrete location
- No information about depth of interaction
- Intersection region of LORs define tumor

b) Scatter

c) True

a) Random

 Scatter Fraction (SF) = Background/Total (at low activity → Randoms negligible)

• Scatter = True*SF/(1-SF)

Random = Total-True/(1-SF)

Medical Imaging ○○○○●	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Current Status of PET					

Limitations of Conventional PET

- Limited energy resolution (18% FWHM at 511 keV)
- Position resolution limited by crystal size (~ 6 mm, degrading away from center)
- No position information within crystal → parallax error
- Multiple hits cannot be treated, apart from taking an average
- No angular information from Compton events to supress random and scatter events

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Outline					
1 Me • F • (dical Imaging PET: Positron Er Current Status o	mission Tomog f PET	raphy		
2 Liq	uid Xenon (LX	e)			
3 LXC • F • F • F	e for Micro-PET Proof of Principle Prototype Design Prototype Test	e n			
 ④ Rec ● F ● (construction Position Reconst Compton Recon	truction from L struction	ight		
5 Fut • [t ure Plans Design of full Mid	cro-PET Ring			
6 Su	mmary				

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Properties	of LXe				

- Z=54, A=131 \rightarrow Attenuation length: 36 mm
- $\bullet\,$ Density: 3 g/cc at 165 K $\rightarrow\,$ compact detector
- Boiling/Melting point temperature: 165 K / 161 K
 → needs cryogenic system
- Produces ionization and scintillation light

 → combining both improves energy resolution
- Purity important: 1 ppb allows an e⁻ lifetime of 1 ms

Ionization

- Yield: 15.6 eV \rightarrow 32800 e⁻ at 511 keV and $E_d = \infty$
- Edrift: 1-2 kV/cm
- v_{drift}: 2 mm/μs

Scintillation

- Yield: 13.8 eV \rightarrow 37000 γ s at 511 keV and $E_d = 0$
- γ s with $\lambda = 178 \pm 14$ nm (special photo-detectors)

Medical Imaging Liquid	l Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans	Summary

Comparison of LXe and other Scintillators

Scintillator	BGO	LSO	LXe
Attenuation length (at 511 keV)[mm]	11	12	36
Yield [γ s/keV]	6.4	32	68
Decay Time [ns]	300	40	2.2, 27
Wavelength [nm]	480	420	178
Photo-fraction	42%	33%	22%

LXe provides:

- Faster decay and higher light yield.
- Simultaneous operation for scintillation and ionization detection when an electric field is applied → high spatial resolution and energy resolution

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Advantages	s of LXe for PE	ίΤ.			

- Good energy resolution < 10 (FWHM)%
- Uniform 3D spatial resolution throughout the field of view:
 < 1 mm in 3D
- Compton reconstruction
 - \rightarrow 3D localization of first interaction (no parallax error, suppression of random and scatter backgrounds)
- Expected timing resolution: < 1 ns
- High count rate: $> 10^{5}/(s \text{ cm}^{2})$
- Cover large volumes with just one electrode array
 - $\rightarrow \text{high sensitivity}$
 - \rightarrow high efficiency: > 70%
- Inexpensive (< \$ 3/cc)

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
0					
Outline					
● P ● C ● C	ical Imaging ET: Positron E urrent Status c iid Xenon (LX	mission Tomog of PET (e)	raphy		
 3 LXe 9 Pi 9 Pi 9 Pi 9 Pi 	for Micro-PE roof of Principl rototype Desig rototype Test	T le in			
 4 Rec • Po • C 	onstruction osition Recons ompton Recor	struction from L Istruction	ight		
5 Futu • D	ire Plans esign of full Mi	icro-PET Ring			

Summary

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Principle of	LXe TPC				

TPC Design based on LXeGRIT (E. Aprile et al. 2008):

- 2D coordinates from anode wires and induction wires with resolution limited by wire spacing (~ 1mm).
- 3rd coordinate from the drift time between the prompt scintillation light trigger and the anode signal

Both light and charge are used for spatial location of interactions and for energy measurements.

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans	Summary
		•000000000000			

Proof of Principle

Small Prototype: Time Projection Chamber (TPC)

- TPC volume 3x3x3 cm³
- typical: E=1 kV/cm, v_d =2 mm/µs
- 2 APDS; solid angle \approx 12%
- Data from 511 keV γ s from ²²Na

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Proof of Principle					
Waveform	Signals				

Ionization	Signal				
00000 Proof of Principle		000000000000000000000000000000000000000	0000000		
Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans	Summary

Dropping charge is caused by attachment *A* and needs correction:

$$Q_f = Q_m / A$$

From the Fit:

- total number of electrons created: Q_f=19700
- drift velocity: v_d=0.20 cm/µs
- electron lifetime: τ =60 μ s
- charge yield: $Q_f/Q_0=0.6$

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Proof of Principle					

Scintillation Signal

Shape caused by solid angle variation that needs to be corrected in addition to the total solid angle F_{Ω} and quantum efficiency ϵ :

$$S_f = S_m/(\epsilon F_\Omega)$$

From the Fit:

- o drift velocity: v_d=0.21 cm/µs
- total number of photons created: S_f=10100
- light yield: $S_f/S_i=0.27$

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Puture Plans	Summary
Proof of Principle					

Charge:

Event Selection

Consider only central events with complete charge deposited on central anode A1.

Light:

APDs show different efficiency. They have to be scaled to one another because quantum efficiency is unknown.

Time:

2 mm window around the middle of the chamber where the measured light is maximal.

Measured charge after recombination F_r :

$$Q_m = AQ_i(1-F_r)$$

Error contributions:

$$\left(\frac{\Delta Q_m}{Q_m}\right)^2 = \left(\frac{ENC_q}{Q_m}\right)^2 \quad (3.5\%) + \left(\frac{\Delta F_r}{1 - F_r}\right)^2$$

 \rightarrow intrinsic charge resolution: 4.2%

 \rightarrow charge-light-fluctuation ΔF_r = (3.2 ± 0.3) %

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans	Summary
Proof of Principle					
Light Spec	trum				

Measured light:

$$S_m = F_{\Omega} \epsilon (S_i + Q_i F_r P_{e \to h\nu})$$

Error contributions:

$$\left(\frac{\Delta S_m}{S_m}\right)^2 = \left(\frac{ENC_s}{MS_m}\right)^2 \quad (4.7\%)$$

$$+ \frac{F(M)}{S_m} \quad (0.6\%)$$

$$+ \left(\frac{\Delta F_\Omega}{F_\Omega}\right)^2 \quad (5.6\%)$$

$$\rightarrow \text{ intrinsic light resolution: } 5.5\% \quad + \left(\frac{P_{e \to h\nu} Q_i \Delta F_r}{S_f}\right)^2$$

 \rightarrow charge-light-fluctuation $\Delta F_r = (2.5 \pm 0.8) \%$

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans	Summary
Proof of Principle					

Light Charge Anti-Correlation

- P: photo-electric, C: Compton,
- S: scattered outside

Using the anti-correlation to rotate coordinate system so that charge axis is perpendicular to the axis of the ellipse:

$$E_c = \bar{y} \frac{\sin(\theta)x + \cos(\theta)y}{\sin(\theta)\bar{x} + \cos(\theta)\bar{y}}$$

Correlation coefficient: $\rho = -0.26$ Correlation angle: $\theta = 58^{\circ}$

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET ○○○○○○○●○○○○	Reconstruction	Future Plans	Summary

Proof of Principle

Combined Energy Spectrum

Combine light and charge to eliminate F_r :

$$E_{c} = \frac{Q_{m}}{A} + \frac{S_{m}}{F_{\Omega}\epsilon}$$
$$= Q_{i} + \frac{S_{i}}{P_{e \to h\nu}}$$

Error contribution: 3.3 % \rightarrow intrinsic energy resolution: 2.5%

With position information available from charge, expect:

- \rightarrow light resolution: 10.4%
- \rightarrow combined energy resolution: 3.6% (< 8% FWHM)

Liquid Xenon (LXe)

LXe for Micro-PET

Reconstruction

Future Plans

Summary

Prototype Design

Micro-PET Design

- 12 sectors, 32 APDs per sector, 96 anode wires, 96 anode induction wires
- Radial depth 12 cm
- Minimal dead space between sectors to increase active volume

Liquid Xenon (LXe)

LXe for Micro-PET

Reconstruction

Future Plans

Summary

Prototype Design

Prototype Sector

- APD Module with 16 APDs
- Cathode Plate: resistive kapton on ceramic plates
- Anode Module: 96 wires, 96 strips
- Field Cage: strips between sectors, wires on APD sides

Liquid Xenon (LXe)

LXe for Micro-PET

Reconstruction

Future Plans

Summary

Prototype Test

Prototype Status

Recent Progress

- Finished test with 16 APDs
- 1st use of liquid purification
- 1st test of pulse tube refrigerator

Problems Solved

- High voltage issues with APDs in LXe
- APD spring contacts faulty → replaced
- Devised procedure of evacuating, baking and cool down

Liquid Xenon (LXe)

LXe for Micro-PET

Reconstruction

Future Plans

Summary

Prototype Test

APD Sector Test (just completed)

APD signals were observed from 511 keV photons from ²²Na

Test ended prematurely due to vacuum problem

But:

Signal amplitude lower than expected

Probable Causes

Impurities in LXe like H_2O \rightarrow Attenuation too high But: Currently no equipment to measure LXe purity

Possible Solution

Use gas purifier in addition to liquid phase purifier + longer high temperature bake-out

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Outline					
● F ● C	dical Imaging PET: Positron E Current Status c	mission Tomog f PET	Iraphy		
2 Liq	uid Xenon (LX	e)			

- 3 LXe for Micro-PET
 - Proof of Principle
 - Prototype Design
 - Prototype Test
- 4

Reconstruction

- Position Reconstruction from Light
- Compton Reconstruction
- 5 Future Plans
 - Design of full Micro-PET Ring
- Summary

Limit event pile up at high rates:

- Use fast light signal to pinpoint location of energy deposit to define region of interest (goal within 1 ml).
- Match light with corresponding slow charge signal.
- Benefit: Only region of interest is blind to next event occuring while charge from first event is still drifting.

Noural Natu					
Position Reconstruction	Ì				
Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary

Challenge

- input: 32 APD signals
- Iooking for 3D position
- multiple interactions producing light

Solution

- Neural Network
- 32 inputs, 3 outputs, one hidden layer with 160 neurons
- implemented in ROOT/C++

Idea:

Train NN on solid angle calculation as opposed to realistic Geant4 simulated data

Why:

Much faster ($\sim\!$ min.) and better coverage of chamber possible compared to generating Geant4 data ($\sim\!$ weeks)

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary					
Position Reconstructio	n									
Performanc	Performance of Neural Networks									

Although training data for NN does not include any fluctuations or multiple interactions the capability to reconstruct the center of gravity for the light emmission works surprisingly well:

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Compton Reconstruct	tion				

Dealing with Compton Events

- Task: Identify first point
- Solution: Compton reconstruction algorithm
- Difficulties:
 - Merging of points not separated within resolution capabilities
 - Missing points with energy below threshold
 - Ambiguities in kinematics

Benefit:

Increase statistics of usable events suppress background events (scatter and random)

Find combination with lowest χ^2 :

E;

ū₁

$$\chi^2 = \sum_{i=2}^{N-1} \frac{(\cos(\theta_E)_i - \cos(\theta_G)_i)^2}{\delta \cos(\theta_E)_i^2 + \delta \cos(\theta_G)_i^2}$$

 $\cos(\theta_E)_i = 1 + \frac{m_e c^2}{E_i} - \frac{m_e c^2}{E_{i+1}}$

Compton Reconstruction	on	000000000000000000000000000000000000000	0000000	
Compton R	econstruction	Evaluation		

Geant4 simulation of NEMA phantom scaled for mico-PET

- 1-2 and 2-2 have the worst signal to background
 - \rightarrow Some irresolvable ambiguities
- Background mostly due to selecting wrong first point (Random and scatter very much suppressed due to very good energy and time resolution)

Compton B	econstruction	Evaluation			
Compton Reconstruction	on				
Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Puture Plans o	Summary

Geant4 simulation of NEMA phantom scaled for mico-PET

- 1-2 and 2-2 have the worst signal to background
 - $\rightarrow \text{Some irresolvable} \\ \text{ambiguities} \\$
- Background mostly due to selecting wrong first point (Random and scatter very much suppressed due to very good energy and time resolution)

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction ○○○○○●	Future Plans	Summary
Compton Reconstruct	tion				

Image Reconstruction from Simulations

Same simple reconstruction method (Filter-Back Projection) used for both (emphasis on resolution not image quality):

In the simulation, the limitations of the LXe system are primarily due to physics effects such as the positron range.

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans ○	Summary
Outline					
 Med P C Z Liqu LXe P P P P P P P 	lical Imaging ET: Positron Ed current Status of uid Xenon (LX for Micro-PET roof of Principle rototype Desig rototype Test	mission Tomog If PET e) e n	raphy		
 4 Rec • P • C • 5 Futu • D 	onstruction osition Recons compton Recon ure Plans pesign of full Mi	truction from L struction cro-PET Ring	ight		
6 Sun	nmary	5			

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans	Summary

Operating and Testing First Sector Prototype

Now assembling TPC and APDs together

 \rightarrow operational in Summer 2009

Technical Performance

- Purity
- Stability
- Mesh and grid transparency
- APD gain and noise
- Electronics noise
- Crosstalk, etc.

Detector Performance

- Light and charge yield
- Drift velocity
- Position resolution with light and ionization
- Time resolution and rate capability
- Energy resolution with light and ionization

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans	Summary
Design of full Micro-F	PET Ring				
Long Term	Plans				

CHRP Project: Design of cryostat in progress:

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PEI	Reconstruction	o Puture Plans	Summary
Outline					
● P ● C	lical Imaging ET: Positron E urrent Status c	mission Tomog of PET	raphy		
2 Liqu	uid Xenon (LX	e)			
 3 LXe • P • P • P 	for Micro-PE roof of Principl rototype Desig rototype Test	F e n			
 4 Rec • P • C 	onstruction osition Recons ompton Recon	truction from L	ight		
5 Futu • D	u re Plans esign of full Mi	cro-PET Ring			
6 Sun	nmarv				

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Conclusion	and Outlook				

- A small liquid xenon TPC has been shown to give excellent energy resolution (<8% FWHM) by combining ionization charge and scintillation light signals observed with avalanche photodiodes.
- We are presently testing a prototype of one sector for a Micro-PET scanner
- Design of full Micro-PET system in progress

Next steps:

- Continue testing of the first sector prototype
- Build two new sector and operate in coincidence for PET measurements within a cryostat designed for a full PET ring

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary

BACKUP

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Decemetrus	tion Efficience				

- Energy threshold on total energy suppresses Scatter events and some Randoms
- Reconstruction efficiency depends on event topology

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Scatter Fra	ction				

The intrinsic Scatter Fraction (SF) of the system is defined as the ratio of total Scatter background to total count rate, when measured at low activity where Random rates would be negligible. Numbers are given for the NEMA phantom.

Energy Window [keV]	LXe [%]	Focus[%]
250	31	35
350	23	24
450	20	22

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary
Sensitivity					

Sensitivity = Attenuation-less True coincidence count rate divided by the source activity, for a point source at the center of the field of view.

A 6 ns coincidence window used.

Energy Window [keV]	LXe [%]	Focus[%]
250	10.2	3.5
350	9.3	3.1
450	8.7	2.6

For the same solid angle profile, the LXePET simulation gives improved sensitivity. Reasons for that are more active detection volume (less escapes) and less inactive material that can absorb/scatter photons.

Medical Imaging	Liquid Xenon (LXe)	LXe for Micro-PET	Reconstruction	Future Plans o	Summary

Noise Equivalent Count Rates

- Most widely used indicator for image quality.
- NEMA-like rat sized phantom
- Coincidence window: 6ns
- NECR=True²/Total
- LXe system gives very high NECR.